Assumptions:
References:
- F. Johansson (2015), Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69:253, DOI: 10.1007/s11075-014-9893-1
- F. W. J. Olver, Asymptotics and Special Functions, AK Peters, 1997. Chapter 8.
TeX:
\zeta\!\left(s\right) = \sum_{k=1}^{N - 1} \frac{1}{{k}^{s}} + \frac{{N}^{1 - s}}{s - 1} + \frac{1}{{N}^{s}} \left(\frac{1}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \frac{\left(s\right)_{2 k - 1}}{{N}^{2 k - 1}}\right) - \int_{N}^{\infty} \frac{B_{2 M}\!\left(t - \left\lfloor t \right\rfloor\right)}{\left(2 M\right)!} \frac{\left(s\right)_{2 M}}{{t}^{s + 2 M}} \, dt s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, s \ne 1 \,\mathbin{\operatorname{and}}\, N \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, M \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s + 2 M - 1\right) \gt 0 \,\mathbin{\operatorname{and}}\, N \ge 1 \,\mathbin{\operatorname{and}}\, M \ge 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
Pow | Power | |
BernoulliB | Bernoulli number | |
Factorial | Factorial | |
RisingFactorial | Rising factorial | |
BernoulliPolynomial | Bernoulli polynomial | |
Infinity | Positive infinity | |
CC | Complex numbers | |
ZZ | Integers | |
Re | Real part |
Source code for this entry:
Entry(ID("792f7b"), Formula(Equal(RiemannZeta(s), Sub(Add(Add(Sum(Div(1, Pow(k, s)), Tuple(k, 1, Sub(N, 1))), Div(Pow(N, Sub(1, s)), Sub(s, 1))), Mul(Div(1, Pow(N, s)), Add(Div(1, 2), Sum(Mul(Div(BernoulliB(Mul(2, k)), Factorial(Mul(2, k))), Div(RisingFactorial(s, Sub(Mul(2, k), 1)), Pow(N, Sub(Mul(2, k), 1)))), Tuple(k, 1, M))))), Integral(Mul(Div(BernoulliPolynomial(Mul(2, M), Sub(t, Floor(t))), Factorial(Mul(2, M))), Div(RisingFactorial(s, Mul(2, M)), Pow(t, Add(s, Mul(2, M))))), Tuple(t, N, Infinity))))), Assumptions(And(Element(s, CC), Unequal(s, 1), Element(N, ZZ), Element(M, ZZ), Greater(Re(Sub(Add(s, Mul(2, M)), 1)), 0), GreaterEqual(N, 1), GreaterEqual(M, 1))), Variables(s, N, M), References("F. Johansson (2015), Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69:253, DOI: 10.1007/s11075-014-9893-1", "F. W. J. Olver, Asymptotics and Special Functions, AK Peters, 1997. Chapter 8."))