Fungrim home page

Fungrim entry: 792f7b

ζ ⁣(s)=k=1N11ks+N1ss1+1Ns(12+k=1MB2k(2k)!(s)2k1N2k1)NB2M ⁣(tt)(2M)!(s)2Mts+2Mdt\zeta\!\left(s\right) = \sum_{k=1}^{N - 1} \frac{1}{{k}^{s}} + \frac{{N}^{1 - s}}{s - 1} + \frac{1}{{N}^{s}} \left(\frac{1}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \frac{\left(s\right)_{2 k - 1}}{{N}^{2 k - 1}}\right) - \int_{N}^{\infty} \frac{B_{2 M}\!\left(t - \left\lfloor t \right\rfloor\right)}{\left(2 M\right)!} \frac{\left(s\right)_{2 M}}{{t}^{s + 2 M}} \, dt
Assumptions:sCands1andNZandMZandRe ⁣(s+2M1)>0andN1andM1s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, s \ne 1 \,\mathbin{\operatorname{and}}\, N \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, M \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s + 2 M - 1\right) \gt 0 \,\mathbin{\operatorname{and}}\, N \ge 1 \,\mathbin{\operatorname{and}}\, M \ge 1
References:
  • F. Johansson (2015), Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69:253, DOI: 10.1007/s11075-014-9893-1
  • F. W. J. Olver, Asymptotics and Special Functions, AK Peters, 1997. Chapter 8.
TeX:
\zeta\!\left(s\right) = \sum_{k=1}^{N - 1} \frac{1}{{k}^{s}} + \frac{{N}^{1 - s}}{s - 1} + \frac{1}{{N}^{s}} \left(\frac{1}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \frac{\left(s\right)_{2 k - 1}}{{N}^{2 k - 1}}\right) - \int_{N}^{\infty} \frac{B_{2 M}\!\left(t - \left\lfloor t \right\rfloor\right)}{\left(2 M\right)!} \frac{\left(s\right)_{2 M}}{{t}^{s + 2 M}} \, dt

s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, s \ne 1 \,\mathbin{\operatorname{and}}\, N \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, M \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s + 2 M - 1\right) \gt 0 \,\mathbin{\operatorname{and}}\, N \ge 1 \,\mathbin{\operatorname{and}}\, M \ge 1
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Powab{a}^{b} Power
BernoulliBBnB_{n} Bernoulli number
Factorialn!n ! Factorial
RisingFactorial(z)k\left(z\right)_{k} Rising factorial
BernoulliPolynomialBn ⁣(z)B_{n}\!\left(z\right) Bernoulli polynomial
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Source code for this entry:
Entry(ID("792f7b"),
    Formula(Equal(RiemannZeta(s), Sub(Add(Add(Sum(Div(1, Pow(k, s)), Tuple(k, 1, Sub(N, 1))), Div(Pow(N, Sub(1, s)), Sub(s, 1))), Mul(Div(1, Pow(N, s)), Add(Div(1, 2), Sum(Mul(Div(BernoulliB(Mul(2, k)), Factorial(Mul(2, k))), Div(RisingFactorial(s, Sub(Mul(2, k), 1)), Pow(N, Sub(Mul(2, k), 1)))), Tuple(k, 1, M))))), Integral(Mul(Div(BernoulliPolynomial(Mul(2, M), Sub(t, Floor(t))), Factorial(Mul(2, M))), Div(RisingFactorial(s, Mul(2, M)), Pow(t, Add(s, Mul(2, M))))), Tuple(t, N, Infinity))))),
    Assumptions(And(Element(s, CC), Unequal(s, 1), Element(N, ZZ), Element(M, ZZ), Greater(Re(Sub(Add(s, Mul(2, M)), 1)), 0), GreaterEqual(N, 1), GreaterEqual(M, 1))),
    Variables(s, N, M),
    References("F. Johansson (2015), Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69:253, DOI: 10.1007/s11075-014-9893-1", "F. W. J. Olver, Asymptotics and Special Functions, AK Peters, 1997. Chapter 8."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC