Fungrim home page

Fungrim entry: 791c44

RJ ⁣(x,y,z,w)=2RJ ⁣(x+λ,y+λ,z+λ,w+λ)+6dRC ⁣(1,1+δd2)   where λ=xy+yz+xz,  δ=(wx)(wy)(wz),  d=(w+x)(w+y)(w+z)R_J\!\left(x, y, z, w\right) = 2 R_J\!\left(x + \lambda, y + \lambda, z + \lambda, w + \lambda\right) + \frac{6}{d} R_C\!\left(1, 1 + \frac{\delta}{{d}^{2}}\right)\; \text{ where } \lambda = \sqrt{x} \sqrt{y} + \sqrt{y} \sqrt{z} + \sqrt{x} \sqrt{z},\;\delta = \left(w - x\right) \left(w - y\right) \left(w - z\right),\;d = \left(\sqrt{w} + \sqrt{x}\right) \left(\sqrt{w} + \sqrt{y}\right) \left(\sqrt{w} + \sqrt{z}\right)
Assumptions:xC  and  yC  and  zC  and  wC  and  Re(x)0  and  Re(y)0  and  Re(z)0  and  Re(w)>0  and  ((x0  and  y0)  or  (x0  and  z0)  or  (y0  and  z0))x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(w) > 0 \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
TeX:
R_J\!\left(x, y, z, w\right) = 2 R_J\!\left(x + \lambda, y + \lambda, z + \lambda, w + \lambda\right) + \frac{6}{d} R_C\!\left(1, 1 + \frac{\delta}{{d}^{2}}\right)\; \text{ where } \lambda = \sqrt{x} \sqrt{y} + \sqrt{y} \sqrt{z} + \sqrt{x} \sqrt{z},\;\delta = \left(w - x\right) \left(w - y\right) \left(w - z\right),\;d = \left(\sqrt{w} + \sqrt{x}\right) \left(\sqrt{w} + \sqrt{y}\right) \left(\sqrt{w} + \sqrt{z}\right)

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(w) > 0 \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRJRJ ⁣(x,y,z,w)R_J\!\left(x, y, z, w\right) Carlson symmetric elliptic integral of the third kind
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
Entry(ID("791c44"),
    Formula(Equal(CarlsonRJ(x, y, z, w), Where(Add(Mul(2, CarlsonRJ(Add(x, lamda), Add(y, lamda), Add(z, lamda), Add(w, lamda))), Mul(Div(6, d), CarlsonRC(1, Add(1, Div(delta, Pow(d, 2)))))), Def(lamda, Add(Add(Mul(Sqrt(x), Sqrt(y)), Mul(Sqrt(y), Sqrt(z))), Mul(Sqrt(x), Sqrt(z)))), Def(delta, Mul(Mul(Sub(w, x), Sub(w, y)), Sub(w, z))), Def(d, Mul(Mul(Add(Sqrt(w), Sqrt(x)), Add(Sqrt(w), Sqrt(y))), Add(Sqrt(w), Sqrt(z))))))),
    Variables(x, y, z, w),
    Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(w, CC), GreaterEqual(Re(x), 0), GreaterEqual(Re(y), 0), GreaterEqual(Re(z), 0), Greater(Re(w), 0), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC