Fungrim home page

Fungrim entry: 78c19c

ψ(m) ⁣(n)=~\psi^{(m)}\!\left(-n\right) = {\tilde \infty}
Assumptions:nZ0  and  mZ0n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
TeX:
\psi^{(m)}\!\left(-n\right) = {\tilde \infty}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
UnsignedInfinity~{\tilde \infty} Unsigned infinity
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("78c19c"),
    Formula(Equal(DigammaFunction(Neg(n), m), UnsignedInfinity)),
    Variables(n, m),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC