Assumptions:
TeX:
\left|f\!\left(z + x\right) - \sum_{k=0}^{N - 1} \frac{{f}^{(k)}(z)}{k !} {x}^{k}\right| \le \frac{C {D}^{N}}{1 - D}\; \text{ where } C = \mathop{\operatorname{sup}}\limits_{t \in \mathbb{C},\,\left|t - z\right| = R} \left|f(t)\right|,\;D = \frac{\left|x\right|}{R} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; R \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \left|x\right| < R \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \operatorname{ClosedDisk}\!\left(z, R\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Sum | Sum | |
ComplexDerivative | Complex derivative | |
Factorial | Factorial | |
Pow | Power | |
Supremum | Supremum of a set or function | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n | |
RR | Real numbers | |
IsHolomorphic | Holomorphic predicate |
Source code for this entry:
Entry(ID("78bb08"), Formula(Where(LessEqual(Abs(Sub(f(Add(z, x)), Sum(Mul(Div(ComplexDerivative(f(z), For(z, z, k)), Factorial(k)), Pow(x, k)), For(k, 0, Sub(N, 1))))), Div(Mul(C, Pow(D, N)), Sub(1, D))), Equal(C, Supremum(Abs(f(t)), For(t), And(Element(t, CC), Equal(Abs(Sub(t, z)), R)))), Equal(D, Div(Abs(x), R)))), Variables(f, z, x, N, R), Assumptions(And(Element(z, CC), Element(x, CC), Element(N, ZZGreaterEqual(1)), Element(R, RR), Less(Abs(x), R), IsHolomorphic(f(t), ForElement(t, Subset(ClosedDisk(z, R)))))))