Assumptions:
TeX:
L\!\left(0, \chi\right) = -\frac{1}{q} \sum_{k=1}^{q} k \chi(k)
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; \chi \ne \chi_{q \, . \, 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DirichletL | Dirichlet L-function | |
| Sum | Sum | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| DirichletGroup | Dirichlet characters with given modulus | |
| DirichletCharacter | Dirichlet character |
Source code for this entry:
Entry(ID("789ca4"),
Formula(Equal(DirichletL(0, chi), Mul(Neg(Div(1, q)), Sum(Mul(k, chi(k)), For(k, 1, q))))),
Variables(chi, q),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), NotEqual(chi, DirichletCharacter(q, 1)))))