Assumptions:
TeX:
\zeta^{(r)}\!\left(s, a\right) = {\left(-1\right)}^{r} \sum_{n=0}^{\infty} \frac{\log^{r}\!\left(n + a\right)}{{\left(n + a\right)}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \setminus \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Pow | Power | |
Sum | Sum | |
Log | Natural logarithm | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Re | Real part | |
ZZLessEqual | Integers less than or equal to n | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("77e507"), Formula(Equal(HurwitzZeta(s, a, r), Mul(Pow(-1, r), Sum(Div(Pow(Log(Add(n, a)), r), Pow(Add(n, a), s)), For(n, 0, Infinity))))), Variables(s, a, r), Assumptions(And(Element(s, CC), Greater(Re(s), 1), Element(a, SetMinus(CC, ZZLessEqual(0))), Element(r, ZZGreaterEqual(0)))))