Assumptions:
TeX:
\theta_{3}\!\left(z , \tau\right) = \prod_{n=1}^{\infty} \left(1 - {q}^{2 n}\right) \left(1 + 2 {q}^{2 n - 1} \cos\!\left(2 \pi z\right) + {q}^{4 n - 2}\right)\; \text{ where } q = {e}^{\pi i \tau}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Product | Product | |
| Pow | Power | |
| Cos | Cosine | |
| Pi | The constant pi (3.14...) | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("77aed2"),
Formula(Equal(JacobiTheta(3, z, tau), Where(Product(Mul(Sub(1, Pow(q, Mul(2, n))), Add(Add(1, Mul(Mul(2, Pow(q, Sub(Mul(2, n), 1))), Cos(Mul(Mul(2, Pi), z)))), Pow(q, Sub(Mul(4, n), 2)))), For(n, 1, Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))