References:
- https://mathoverflow.net/q/279936
TeX:
\left(\operatorname{RH}\right) \iff \left(\frac{1}{\pi} \int_{0}^{\infty} \log\!\left(\left|\frac{\zeta\!\left(\frac{1}{2} + i t\right)}{\zeta\!\left(\frac{1}{2}\right)}\right|\right) \frac{1}{{t}^{2}} \, dt = \frac{\pi}{8} + \frac{\gamma}{4} + \frac{\log\!\left(8 \pi\right)}{4} - 2\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannHypothesis | Riemann hypothesis | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| Log | Natural logarithm | |
| Abs | Absolute value | |
| RiemannZeta | Riemann zeta function | |
| ConstI | Imaginary unit | |
| Pow | Power | |
| Infinity | Positive infinity | |
| ConstGamma | The constant gamma (0.577...) |
Source code for this entry:
Entry(ID("7783f9"),
Formula(Equivalent(RiemannHypothesis, Equal(Mul(Div(1, Pi), Integral(Mul(Log(Abs(Div(RiemannZeta(Add(Div(1, 2), Mul(ConstI, t))), RiemannZeta(Div(1, 2))))), Div(1, Pow(t, 2))), For(t, 0, Infinity))), Sub(Add(Add(Div(Pi, 8), Div(ConstGamma, 4)), Div(Log(Mul(8, Pi)), 4)), 2)))),
References("https://mathoverflow.net/q/279936"))