Fungrim home page

Fungrim entry: 771801

RD ⁣(x,x,y)={3yx(RC ⁣(y,x)1y),xyx3/2,x=yR_D\!\left(x, x, y\right) = \begin{cases} \frac{3}{y - x} \left(R_C\!\left(y, x\right) - \frac{1}{\sqrt{y}}\right), & x \ne y\\{x}^{-3 / 2}, & x = y\\ \end{cases}
Assumptions:xC  and  yCx \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C}
TeX:
R_D\!\left(x, x, y\right) = \begin{cases} \frac{3}{y - x} \left(R_C\!\left(y, x\right) - \frac{1}{\sqrt{y}}\right), & x \ne y\\{x}^{-3 / 2}, & x = y\\ \end{cases}

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRDRD ⁣(x,y,z)R_D\!\left(x, y, z\right) Degenerate Carlson symmetric elliptic integral of the third kind
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("771801"),
    Formula(Equal(CarlsonRD(x, x, y), Cases(Tuple(Mul(Div(3, Sub(y, x)), Sub(CarlsonRC(y, x), Div(1, Sqrt(y)))), NotEqual(x, y)), Tuple(Pow(x, Neg(Div(3, 2))), Equal(x, y))))),
    Variables(x, y),
    Assumptions(And(Element(x, CC), Element(y, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC