Assumptions:
TeX:
2 R_G\!\left(x, y, z\right) = z R_F\!\left(x, y, z\right) - \frac{\left(x - z\right) \left(y - z\right)}{3} R_D\!\left(x, y, z\right) + \frac{\sqrt{x} \sqrt{y}}{\sqrt{z}} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(x \ne 0 \;\mathbin{\operatorname{or}}\; y \ne 0\right) \;\mathbin{\operatorname{and}}\; z \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
Sqrt | Principal square root | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("7609c8"), Formula(Equal(Mul(2, CarlsonRG(x, y, z)), Add(Sub(Mul(z, CarlsonRF(x, y, z)), Mul(Div(Mul(Sub(x, z), Sub(y, z)), 3), CarlsonRD(x, y, z))), Div(Mul(Sqrt(x), Sqrt(y)), Sqrt(z))))), Variables(x, y, z), Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Or(NotEqual(x, 0), NotEqual(y, 0)), NotEqual(z, 0))))