Assumptions:
TeX:
g_{p} = \min \left\{ a : a \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \# \left\{ {a}^{k} \bmod p : k \in \mathbb{Z}_{\ge 0} \right\} = p - 1 \;\mathbin{\operatorname{and}}\; \# \left\{ {a}^{k} \bmod {p}^{2} : k \in \mathbb{Z}_{\ge 0} \right\} = p \left(p - 1\right) \right\} p \in \mathbb{P} \;\mathbin{\operatorname{and}}\; p \ge 3
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ConreyGenerator | Conrey generator | |
Minimum | Minimum value of a set or function | |
ZZGreaterEqual | Integers greater than or equal to n | |
Cardinality | Set cardinality | |
Pow | Power | |
PP | Prime numbers |
Source code for this entry:
Entry(ID("75231e"), Formula(Equal(ConreyGenerator(p), Minimum(Set(a, For(a), And(Element(a, ZZGreaterEqual(1)), Equal(Cardinality(Set(Mod(Pow(a, k), p), For(k), Element(k, ZZGreaterEqual(0)))), Sub(p, 1)), Equal(Cardinality(Set(Mod(Pow(a, k), Pow(p, 2)), For(k), Element(k, ZZGreaterEqual(0)))), Mul(p, Sub(p, 1)))))))), Variables(p), Assumptions(And(Element(p, PP), GreaterEqual(p, 3))))