Fungrim home page

Fungrim entry: 74274a

G,η ⁣(z)(ddzF,η ⁣(z))(ddzG,η ⁣(z))F,η ⁣(z)=1G_{\ell,\eta}\!\left(z\right) \left(\frac{d}{d z}\, F_{\ell,\eta}\!\left(z\right)\right) - \left(\frac{d}{d z}\, G_{\ell,\eta}\!\left(z\right)\right) F_{\ell,\eta}\!\left(z\right) = 1
Assumptions:(1++iη{0,1,}  and  1+iη{0,1,})  and  zC(,0]\left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
TeX:
G_{\ell,\eta}\!\left(z\right) \left(\frac{d}{d z}\, F_{\ell,\eta}\!\left(z\right)\right) - \left(\frac{d}{d z}\, G_{\ell,\eta}\!\left(z\right)\right) F_{\ell,\eta}\!\left(z\right) = 1

\left(1 + \ell + i \eta \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; 1 + \ell - i \eta \notin \{0, -1, \ldots\}\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
CoulombGG,η ⁣(z)G_{\ell,\eta}\!\left(z\right) Irregular Coulomb wave function
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
CoulombFF,η ⁣(z)F_{\ell,\eta}\!\left(z\right) Regular Coulomb wave function
ConstIii Imaginary unit
ZZLessEqualZn\mathbb{Z}_{\le n} Integers less than or equal to n
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("74274a"),
    Formula(Equal(Sub(Mul(CoulombG(ell, eta, z), Parentheses(ComplexDerivative(CoulombF(ell, eta, z), For(z, z, 1)))), Mul(Parentheses(ComplexDerivative(CoulombG(ell, eta, z), For(z, z, 1))), CoulombF(ell, eta, z))), 1)),
    Variables(ell, eta, z),
    Assumptions(And(And(NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC