Assumptions:
TeX:
x \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; x \ne yDefinitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| Pow | Power | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("741859"),
Equal(ComplexDerivative(CarlsonRC(x, y), For(y, y)), Cases(Tuple(Mul(Div(1, Mul(2, Sub(x, y))), Sub(CarlsonRC(x, y), Div(Sqrt(x), y))), NotEqual(x, y)), Tuple(Neg(Mul(Div(1, 3), Pow(x, Neg(Div(3, 2))))), Equal(x, y)))),
Variables(x, y),
Assumptions(And(Element(x, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), NotEqual(x, y))))