Assumptions:
TeX:
\theta_{4}\!\left(z , \tau\right) \theta_{4}\!\left(w , \tau\right) = \theta_{3}\!\left(z + w , 2 \tau\right) \theta_{3}\!\left(z - w , 2 \tau\right) - \theta_{2}\!\left(z + w , 2 \tau\right) \theta_{2}\!\left(z - w , 2 \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \tau \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("73eb5d"), Formula(Equal(Mul(JacobiTheta(4, z, tau), JacobiTheta(4, w, tau)), Sub(Mul(JacobiTheta(3, Add(z, w), Mul(2, tau)), JacobiTheta(3, Sub(z, w), Mul(2, tau))), Mul(JacobiTheta(2, Add(z, w), Mul(2, tau)), JacobiTheta(2, Sub(z, w), Mul(2, tau)))))), Variables(z, w, tau), Assumptions(And(Element(z, CC), Element(w, tau), Element(tau, HH))))