Assumptions:
Alternative assumptions:
TeX:
\sqrt{a b} = \sqrt{a} \sqrt{b} \left(a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \left[0, \infty\right)\right) \,\mathbin{\operatorname{or}}\, \left(b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, a \in \left[0, \infty\right)\right) a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \arg\!\left(a\right) + \arg\!\left(b\right) \in \left(-\pi, \pi\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
CC | Complex numbers | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity | |
Arg | Complex argument | |
OpenClosedInterval | Open-closed interval | |
ConstPi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("73b76c"), Formula(Equal(Sqrt(Mul(a, b)), Mul(Sqrt(a), Sqrt(b)))), Variables(a, b), Assumptions(Or(And(Element(a, CC), Element(b, ClosedOpenInterval(0, Infinity))), And(Element(b, CC), Element(a, ClosedOpenInterval(0, Infinity)))), And(Element(a, CC), Element(b, CC), Element(Add(Arg(a), Arg(b)), OpenClosedInterval(Neg(ConstPi), ConstPi)))))