Assumptions:
TeX:
\eta(\tau) = {e}^{\pi i \tau / 12} \theta_{3}\!\left(\frac{\tau + 1}{2} , 3 \tau\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DedekindEta | Dedekind eta function | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("737805"), Formula(Equal(DedekindEta(tau), Mul(Exp(Div(Mul(Mul(Pi, ConstI), tau), 12)), JacobiTheta(3, Div(Add(tau, 1), 2), Mul(3, tau))))), Variables(tau), Assumptions(Element(tau, HH)))