Assumptions:
TeX:
R_C\!\left(x, -c x\right) = \frac{1}{\sqrt{\left(c + 1\right) x}} \begin{cases} \operatorname{atanh}\!\left(\sqrt{c + 1}\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\\operatorname{atanh}\!\left(\sqrt{c + 1}\right) + \pi i, & \text{otherwise}\\ \end{cases} x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
Sqrt | Principal square root | |
Im | Imaginary part | |
Re | Real part | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("7348e3"), Formula(Equal(CarlsonRC(x, Neg(Mul(c, x))), Mul(Div(1, Sqrt(Mul(Add(c, 1), x))), Cases(Tuple(Atanh(Sqrt(Add(c, 1))), Or(Less(Im(x), 0), And(Equal(Im(x), 0), GreaterEqual(Re(x), 0)))), Tuple(Add(Atanh(Sqrt(Add(c, 1))), Mul(Pi, ConstI)), Otherwise))))), Variables(x, c), Assumptions(And(Element(x, CC), Element(c, OpenInterval(0, Infinity)))))