Fungrim home page

Fungrim entry: 7348e3

RC ⁣(x,cx)=1(c+1)x{atanh ⁣(c+1),Im(x)<0  or  (Im(x)=0  and  Re(x)0)atanh ⁣(c+1)+πi,otherwiseR_C\!\left(x, -c x\right) = \frac{1}{\sqrt{\left(c + 1\right) x}} \begin{cases} \operatorname{atanh}\!\left(\sqrt{c + 1}\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\\operatorname{atanh}\!\left(\sqrt{c + 1}\right) + \pi i, & \text{otherwise}\\ \end{cases}
Assumptions:xC  and  c(0,)x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)
TeX:
R_C\!\left(x, -c x\right) = \frac{1}{\sqrt{\left(c + 1\right) x}} \begin{cases} \operatorname{atanh}\!\left(\sqrt{c + 1}\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\\operatorname{atanh}\!\left(\sqrt{c + 1}\right) + \pi i, & \text{otherwise}\\ \end{cases}

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Sqrtz\sqrt{z} Principal square root
ImIm(z)\operatorname{Im}(z) Imaginary part
ReRe(z)\operatorname{Re}(z) Real part
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("7348e3"),
    Formula(Equal(CarlsonRC(x, Neg(Mul(c, x))), Mul(Div(1, Sqrt(Mul(Add(c, 1), x))), Cases(Tuple(Atanh(Sqrt(Add(c, 1))), Or(Less(Im(x), 0), And(Equal(Im(x), 0), GreaterEqual(Re(x), 0)))), Tuple(Add(Atanh(Sqrt(Add(c, 1))), Mul(Pi, ConstI)), Otherwise))))),
    Variables(x, c),
    Assumptions(And(Element(x, CC), Element(c, OpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC