Assumptions:
TeX:
R_C\!\left(x, -c x\right) = \frac{1}{\sqrt{\left(c + 1\right) x}} \begin{cases} \operatorname{atanh}\!\left(\sqrt{c + 1}\right), & \operatorname{Im}(x) < 0 \;\mathbin{\operatorname{or}}\; \left(\operatorname{Im}(x) = 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(x) \ge 0\right)\\\operatorname{atanh}\!\left(\sqrt{c + 1}\right) + \pi i, & \text{otherwise}\\ \end{cases}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| Im | Imaginary part | |
| Re | Real part | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| CC | Complex numbers | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("7348e3"),
Formula(Equal(CarlsonRC(x, Neg(Mul(c, x))), Mul(Div(1, Sqrt(Mul(Add(c, 1), x))), Cases(Tuple(Atanh(Sqrt(Add(c, 1))), Or(Less(Im(x), 0), And(Equal(Im(x), 0), GreaterEqual(Re(x), 0)))), Tuple(Add(Atanh(Sqrt(Add(c, 1))), Mul(Pi, ConstI)), Otherwise))))),
Variables(x, c),
Assumptions(And(Element(x, CC), Element(c, OpenInterval(0, Infinity)))))