Assumptions:
TeX:
R_J\!\left(0, y, z, w\right) = \frac{3 \pi}{4} R_{-3 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[y, z, w, w\right]\right) y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; w \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRJ | Carlson symmetric elliptic integral of the third kind | |
Pi | The constant pi (3.14...) | |
CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("7314c4"), Formula(Equal(CarlsonRJ(0, y, z, w), Mul(Div(Mul(3, Pi), 4), CarlsonHypergeometricR(Neg(Div(3, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2), Div(1, 2)), List(y, z, w, w))))), Variables(y, z, w), Assumptions(And(Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(w, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))