Assumptions:
TeX:
\zeta\!\left(2 n\right) = \frac{{\left(-1\right)}^{n + 1} B_{2 n} {\left(2 \pi\right)}^{2 n}}{2 \left(2 n\right)!}
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ge 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Pow | Power | |
| BernoulliB | Bernoulli number | |
| ConstPi | The constant pi (3.14...) | |
| Factorial | Factorial | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("72ccda"),
Formula(Equal(RiemannZeta(Mul(2, n)), Div(Mul(Mul(Pow(-1, Add(n, 1)), BernoulliB(Mul(2, n))), Pow(Mul(2, ConstPi), Mul(2, n))), Mul(2, Factorial(Mul(2, n)))))),
Variables(n),
Assumptions(And(Element(n, ZZ), GreaterEqual(n, 1))))