Assumptions:
TeX:
\zeta\!\left(2 n\right) = \frac{{\left(-1\right)}^{n + 1} B_{2 n} {\left(2 \pi\right)}^{2 n}}{2 \left(2 n\right)!} n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ge 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
Pow | Power | |
BernoulliB | Bernoulli number | |
ConstPi | The constant pi (3.14...) | |
Factorial | Factorial | |
ZZ | Integers |
Source code for this entry:
Entry(ID("72ccda"), Formula(Equal(RiemannZeta(Mul(2, n)), Div(Mul(Mul(Pow(-1, Add(n, 1)), BernoulliB(Mul(2, n))), Pow(Mul(2, ConstPi), Mul(2, n))), Mul(2, Factorial(Mul(2, n)))))), Variables(n), Assumptions(And(Element(n, ZZ), GreaterEqual(n, 1))))