Fungrim home page

Fungrim entry: 72b6ca

Wk ⁣(z)=Wk ⁣(z)z(1+Wk ⁣(z))W'_{k}\!\left(z\right) = \frac{W_{k}\!\left(z\right)}{z \left(1 + W_{k}\!\left(z\right)\right)}
Assumptions:(k{0,1}andzC{0,e1})or(kZ{0,1}andzC{0})\left(k \in \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0, -{e}^{-1}\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k \in \mathbb{Z} \setminus \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right)
TeX:
W'_{k}\!\left(z\right) = \frac{W_{k}\!\left(z\right)}{z \left(1 + W_{k}\!\left(z\right)\right)}

\left(k \in \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0, -{e}^{-1}\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k \in \mathbb{Z} \setminus \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right)
Definitions:
Fungrim symbol Notation Short description
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
CCC\mathbb{C} Complex numbers
Expez{e}^{z} Exponential function
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("72b6ca"),
    Formula(Equal(LambertW(k, z, 1), Div(LambertW(k, z), Mul(z, Add(1, LambertW(k, z, 0)))))),
    Variables(k, z),
    Assumptions(Or(And(Element(k, Set(0, 1)), Element(z, SetMinus(CC, Set(0, Neg(Exp(-1)))))), And(Element(k, SetMinus(ZZ, Set(0, 1))), Element(z, SetMinus(CC, Set(0)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC