Assumptions:
TeX:
W'_{k}\!\left(z\right) = \frac{W_{k}\!\left(z\right)}{z \left(1 + W_{k}\!\left(z\right)\right)} \left(k \in \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0, -{e}^{-1}\right\}\right) \,\mathbin{\operatorname{or}}\, \left(k \in \mathbb{Z} \setminus \left\{0, 1\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LambertW | Lambert W-function | |
CC | Complex numbers | |
Exp | Exponential function | |
ZZ | Integers |
Source code for this entry:
Entry(ID("72b6ca"), Formula(Equal(LambertW(k, z, 1), Div(LambertW(k, z), Mul(z, Add(1, LambertW(k, z, 0)))))), Variables(k, z), Assumptions(Or(And(Element(k, Set(0, 1)), Element(z, SetMinus(CC, Set(0, Neg(Exp(-1)))))), And(Element(k, SetMinus(ZZ, Set(0, 1))), Element(z, SetMinus(CC, Set(0)))))))