Assumptions:
TeX:
\sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{n + a} = \frac{1}{2} \left(\psi\!\left(\frac{a + 1}{2}\right) - \psi\!\left(\frac{a}{2}\right)\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Pow | Power | |
| Infinity | Positive infinity | |
| DigammaFunction | Digamma function | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("7212ea"),
Formula(Equal(Sum(Div(Pow(-1, n), Add(n, a)), For(n, 0, Infinity)), Mul(Div(1, 2), Sub(DigammaFunction(Div(Add(a, 1), 2)), DigammaFunction(Div(a, 2)))))),
Variables(a),
Assumptions(And(Element(a, CC), NotElement(a, ZZLessEqual(0)))))