Assumptions:
TeX:
\sum_{n=0}^{\infty} \frac{{\left(-1\right)}^{n}}{n + a} = \frac{1}{2} \left(\psi\!\left(\frac{a + 1}{2}\right) - \psi\!\left(\frac{a}{2}\right)\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
Infinity | Positive infinity | |
DigammaFunction | Digamma function | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("7212ea"), Formula(Equal(Sum(Div(Pow(-1, n), Add(n, a)), For(n, 0, Infinity)), Mul(Div(1, 2), Sub(DigammaFunction(Div(Add(a, 1), 2)), DigammaFunction(Div(a, 2)))))), Variables(a), Assumptions(And(Element(a, CC), NotElement(a, ZZLessEqual(0)))))