Assumptions:
TeX:
\sin^{2 n + 1}\!\left(z\right) = \frac{1}{{4}^{n}} \sum_{k=0}^{n} {\left(-1\right)}^{n + k} {2 n + 1 \choose k} \sin\!\left(\left(2 n - 2 k + 1\right) z\right) z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
Sin | Sine | |
Binomial | Binomial coefficient | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("71a264"), Formula(Equal(Pow(Sin(z), Add(Mul(2, n), 1)), Mul(Div(1, Pow(4, n)), Sum(Mul(Mul(Pow(-1, Add(n, k)), Binomial(Add(Mul(2, n), 1), k)), Sin(Mul(Add(Sub(Mul(2, n), Mul(2, k)), 1), z))), Tuple(k, 0, n))))), Variables(z, n), Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)))))