Fungrim home page

Fungrim entry: 71a0ff

agm ⁣(a,b)=π4a+bK ⁣((aba+b)2)\operatorname{agm}\!\left(a, b\right) = \frac{\pi}{4} \frac{a + b}{K\!\left({\left(\frac{a - b}{a + b}\right)}^{2}\right)}
Assumptions:aC  and  bC  and  b0  and  ab(,0]a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \ne 0 \;\mathbin{\operatorname{and}}\; \frac{a}{b} \notin \left(-\infty, 0\right]
TeX:
\operatorname{agm}\!\left(a, b\right) = \frac{\pi}{4} \frac{a + b}{K\!\left({\left(\frac{a - b}{a + b}\right)}^{2}\right)}

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \ne 0 \;\mathbin{\operatorname{and}}\; \frac{a}{b} \notin \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
AGMagm ⁣(a,b)\operatorname{agm}\!\left(a, b\right) Arithmetic-geometric mean
Piπ\pi The constant pi (3.14...)
EllipticKK(m)K(m) Legendre complete elliptic integral of the first kind
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("71a0ff"),
    Formula(Equal(AGM(a, b), Mul(Div(Pi, 4), Div(Add(a, b), EllipticK(Pow(Div(Sub(a, b), Add(a, b)), 2)))))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC), NotEqual(b, 0), NotElement(Div(a, b), OpenClosedInterval(Neg(Infinity), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC