Assumptions:
TeX:
R_C\!\left(x, y\right) = \begin{cases} \frac{\operatorname{acos}\!\left(\sqrt{\frac{x}{y}}\right)}{\sqrt{y - x}}, & x < y\\\frac{1}{\sqrt{x}}, & x = y\\\frac{\operatorname{acosh}\!\left(\sqrt{\frac{x}{y}}\right)}{\sqrt{x - y}}, & x > y\\ \end{cases} x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
Sqrt | Principal square root | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("718f3a"), Formula(Equal(CarlsonRC(x, y), Cases(Tuple(Div(Acos(Sqrt(Div(x, y))), Sqrt(Sub(y, x))), Less(x, y)), Tuple(Div(1, Sqrt(x)), Equal(x, y)), Tuple(Div(Acosh(Sqrt(Div(x, y))), Sqrt(Sub(x, y))), Greater(x, y))))), Variables(x, y), Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)))))