Assumptions:
TeX:
\theta_{1}\!\left(z , \tau\right) = -i {e}^{\pi i \tau / 4} \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {q}^{n \left(n + 1\right)} {w}^{2 n + 1}\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| Sum | Sum | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("700d94"),
Formula(Equal(JacobiTheta(1, z, tau), Where(Mul(Mul(Neg(ConstI), Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Sum(Mul(Mul(Pow(-1, n), Pow(q, Mul(n, Add(n, 1)))), Pow(w, Add(Mul(2, n), 1))), For(n, Neg(Infinity), Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))), Equal(w, Exp(Mul(Mul(Pi, ConstI), z)))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))