Assumptions:
References:
- https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
\log G\!\left(z + 1\right) = \frac{{z}^{2}}{4} + z \log \Gamma\!\left(z + 1\right) - \left(\frac{z \left(z + 1\right)}{2} + \frac{1}{12}\right) \log(z) - \log(A) + \sum_{n=1}^{N - 1} \frac{B_{2 n + 2}}{2 n \left(2 n + 1\right) \left(2 n + 2\right) {z}^{2 n}} + R_{N}\!\left(z\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesG | Logarithmic Barnes G-function | |
Pow | Power | |
LogGamma | Logarithmic gamma function | |
Log | Natural logarithm | |
Sum | Sum | |
BernoulliB | Bernoulli number | |
LogBarnesGRemainder | Remainder term in asymptotic expansion of logarithmic Barnes G-function | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6f8e14"), Formula(Equal(LogBarnesG(Add(z, 1)), Add(Add(Sub(Sub(Add(Div(Pow(z, 2), 4), Mul(z, LogGamma(Add(z, 1)))), Mul(Add(Div(Mul(z, Add(z, 1)), 2), Div(1, 12)), Log(z))), Log(ConstGlaisher)), Sum(Div(BernoulliB(Add(Mul(2, n), 2)), Mul(Mul(Mul(Mul(2, n), Add(Mul(2, n), 1)), Add(Mul(2, n), 2)), Pow(z, Mul(2, n)))), For(n, 1, Sub(N, 1)))), LogBarnesGRemainder(N, z)))), Variables(z, N), Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)), Element(N, ZZGreaterEqual(1)))), References("https://dx.doi.org/10.1098/rspa.2014.0534"))