Fungrim home page

Fungrim entry: 6f63dd

zzc=zcz\sqrt{\frac{z}{z - c}} = \frac{\sqrt{-z}}{\sqrt{c - z}}
Assumptions:zCandc[0,)andzc0z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, z - c \ne 0
TeX:
\sqrt{\frac{z}{z - c}} = \frac{\sqrt{-z}}{\sqrt{c - z}}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \left[0, \infty\right) \,\mathbin{\operatorname{and}}\, z - c \ne 0
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("6f63dd"),
    Formula(Equal(Sqrt(Div(z, Sub(z, c))), Div(Sqrt(Neg(z)), Sqrt(Sub(c, z))))),
    Variables(z, c),
    Assumptions(And(Element(z, CC), Element(c, ClosedOpenInterval(0, Infinity)), Unequal(Sub(z, c), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC