Assumptions:
TeX:
\zeta\!\left(s, n\right) = \zeta\!\left(s\right) - \sum_{k=1}^{n - 1} \frac{1}{{k}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
Pow | Power | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6e69fc"), Formula(Equal(HurwitzZeta(s, n), Sub(RiemannZeta(s), Sum(Div(1, Pow(k, s)), For(k, 1, Sub(n, 1)))))), Variables(s, n), Assumptions(And(Element(s, CC), Element(n, ZZGreaterEqual(1)))))