Assumptions:
TeX:
\zeta\!\left(s, n\right) = \zeta\!\left(s\right) - \sum_{k=1}^{n - 1} \frac{1}{{k}^{s}}
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| HurwitzZeta | Hurwitz zeta function | |
| RiemannZeta | Riemann zeta function | |
| Sum | Sum | |
| Pow | Power | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6e69fc"),
Formula(Equal(HurwitzZeta(s, n), Sub(RiemannZeta(s), Sum(Div(1, Pow(k, s)), For(k, 1, Sub(n, 1)))))),
Variables(s, n),
Assumptions(And(Element(s, CC), Element(n, ZZGreaterEqual(1)))))