Assumptions:
TeX:
W_{{k}_{1}}\!\left({z}_{1}\right) \ne W_{{k}_{2}}\!\left({z}_{2}\right)
{k}_{1} \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, {k}_{2} \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, {z}_{1} \in \mathbb{C} \,\mathbin{\operatorname{and}}\, {z}_{2} \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left({k}_{1} \ne {k}_{2} \,\mathbin{\operatorname{or}}\, {z}_{1} \ne {z}_{2}\right) \,\mathbin{\operatorname{and}}\, W_{{k}_{1}}\!\left({z}_{1}\right) \notin \left\{-1, -\infty\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LambertW | Lambert W-function | |
| ZZ | Integers | |
| CC | Complex numbers | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("6e05c9"),
Formula(Unequal(LambertW(Subscript(k, 1), Subscript(z, 1)), LambertW(Subscript(k, 2), Subscript(z, 2)))),
Variables(Subscript(k, 1), Subscript(z, 1), Subscript(k, 2), Subscript(z, 2)),
Assumptions(And(Element(Subscript(k, 1), ZZ), Element(Subscript(k, 2), ZZ), Element(Subscript(z, 1), CC), Element(Subscript(z, 2), CC), Or(Unequal(Subscript(k, 1), Subscript(k, 2)), Unequal(Subscript(z, 1), Subscript(z, 2))), NotElement(LambertW(Subscript(k, 1), Subscript(z, 1)), Set(-1, Neg(Infinity))))))