Fungrim home page

Fungrim entry: 6ddbf4

abzdz=23(b3/2a3/2)\int_{a}^{b} \sqrt{z} \, dz = \frac{2}{3} \left({b}^{3 / 2} - {a}^{3 / 2}\right)
Assumptions:aCandbCand((Re ⁣(a)0andRe ⁣(b)0)or(Im ⁣(a)0andIm ⁣(b)0)or(Im ⁣(a)<0andIm ⁣(b)<0))a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left(\operatorname{Re}\!\left(a\right) \ge 0 \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(b\right) \ge 0\right) \,\mathbin{\operatorname{or}}\, \left(\operatorname{Im}\!\left(a\right) \ge 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(b\right) \ge 0\right) \,\mathbin{\operatorname{or}}\, \left(\operatorname{Im}\!\left(a\right) \lt 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(b\right) \lt 0\right)\right)
Alternative assumptions:aCandbCand(a,b)(,0)={}a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(a, b\right) \cap \left(-\infty, 0\right) = \left\{\right\}
TeX:
\int_{a}^{b} \sqrt{z} \, dz = \frac{2}{3} \left({b}^{3 / 2} - {a}^{3 / 2}\right)

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left(\operatorname{Re}\!\left(a\right) \ge 0 \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(b\right) \ge 0\right) \,\mathbin{\operatorname{or}}\, \left(\operatorname{Im}\!\left(a\right) \ge 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(b\right) \ge 0\right) \,\mathbin{\operatorname{or}}\, \left(\operatorname{Im}\!\left(a\right) \lt 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(b\right) \lt 0\right)\right)

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(a, b\right) \cap \left(-\infty, 0\right) = \left\{\right\}
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("6ddbf4"),
    Formula(Equal(Integral(Sqrt(z), Tuple(z, a, b)), Mul(Div(2, 3), Sub(Pow(b, Div(3, 2)), Pow(a, Div(3, 2)))))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC), Or(And(GreaterEqual(Re(a), 0), GreaterEqual(Re(b), 0)), And(GreaterEqual(Im(a), 0), GreaterEqual(Im(b), 0)), And(Less(Im(a), 0), Less(Im(b), 0)))), And(Element(a, CC), Element(b, CC), Equal(Intersection(OpenInterval(a, b), OpenInterval(Neg(Infinity), 0)), Set()))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC