Assumptions:
TeX:
\frac{d^{n}}{{d z}^{n}} \left[\psi\!\left(z\right)\right] = \psi^{(n)}\!\left(z\right)
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| DigammaFunction | Digamma function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("6db9fc"),
Formula(Equal(ComplexDerivative(Brackets(DigammaFunction(z)), For(z, z, n)), DigammaFunction(z, n))),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))