References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987.
TeX:
\sum_{n=0}^{\infty} \frac{1}{F_{{2}^{n}}} = \frac{7 - \sqrt{5}}{2}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Fibonacci | Fibonacci number | |
Pow | Power | |
Infinity | Positive infinity | |
Sqrt | Principal square root |
Source code for this entry:
Entry(ID("6d8bf0"), Formula(Equal(Sum(Div(1, Fibonacci(Pow(2, n))), For(n, 0, Infinity)), Div(Sub(7, Sqrt(5)), 2))), References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))