Assumptions:
References:
- B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Proposition 3.8-1.
TeX:
\Gamma\!\left(z\right) = {\left(2 \pi\right)}^{1 / 2} {z}^{z - 1 / 2} {e}^{-z} \exp\!\left(\sum_{n=1}^{\infty} \left(z + n - \frac{1}{2}\right) \log\!\left(\frac{z + n}{z + n - 1}\right) - 1\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \notin \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| GammaFunction | Gamma function | |
| Pow | Power | |
| ConstPi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| Log | Natural logarithm | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("6d0a95"),
Formula(Equal(GammaFunction(z), Mul(Mul(Mul(Pow(Mul(2, ConstPi), Div(1, 2)), Pow(z, Sub(z, Div(1, 2)))), Exp(Neg(z))), Exp(Sum(Sub(Mul(Sub(Add(z, n), Div(1, 2)), Log(Div(Add(z, n), Sub(Add(z, n), 1)))), 1), Tuple(n, 1, Infinity)))))),
Variables(z),
Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)))),
References("B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Proposition 3.8-1."))