Assumptions:
References:
- B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Proposition 3.8-1.
TeX:
\Gamma(z) = {\left(2 \pi\right)}^{1 / 2} {z}^{z - 1 / 2} {e}^{-z} \exp\!\left(\sum_{n=1}^{\infty} \left(z + n - \frac{1}{2}\right) \log\!\left(\frac{z + n}{z + n - 1}\right) - 1\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Gamma | Gamma function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Exp | Exponential function | |
Sum | Sum | |
Log | Natural logarithm | |
Infinity | Positive infinity | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("6d0a95"), Formula(Equal(Gamma(z), Mul(Mul(Mul(Pow(Mul(2, Pi), Div(1, 2)), Pow(z, Sub(z, Div(1, 2)))), Exp(Neg(z))), Exp(Sum(Sub(Mul(Sub(Add(z, n), Div(1, 2)), Log(Div(Add(z, n), Sub(Add(z, n), 1)))), 1), For(n, 1, Infinity)))))), Variables(z), Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)))), References("B. C. Carlson (1977), Special functions of applied mathematics, Academic Press. Proposition 3.8-1."))