Assumptions:
TeX:
\operatorname{lcm}\!\left(\prod_{k=1}^{m} {p_{k}}^{{e}_{k}}, \prod_{k=1}^{m} {p_{k}}^{{f}_{k}}\right) = \prod_{k=1}^{m} {p_{k}}^{\max\left({e}_{k}, {f}_{k}\right)}
{e}_{k} \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, {f}_{k} \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LCM | Least common multiple | |
| Pow | Power | |
| PrimeNumber | nth prime number | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6cefd7"),
Formula(Equal(LCM(Product(Pow(PrimeNumber(k), Subscript(e, k)), Tuple(k, 1, m)), Product(Pow(PrimeNumber(k), Subscript(f, k)), Tuple(k, 1, m))), Product(Pow(PrimeNumber(k), Max(Subscript(e, k), Subscript(f, k))), Tuple(k, 1, m)))),
Variables(e, f, m),
Assumptions(And(Element(Subscript(e, k), ZZGreaterEqual(0)), Element(Subscript(f, k), ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))