Assumptions:
TeX:
\zeta\!\left(s, \frac{1}{2} + n\right) = \left({2}^{s} - 1\right) \zeta\!\left(s\right) - {2}^{s} \sum_{k=0}^{n - 1} \frac{1}{{\left(2 k + 1\right)}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Pow | Power | |
RiemannZeta | Riemann zeta function | |
Sum | Sum | |
CC | Complex numbers | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("6c3523"), Formula(Equal(HurwitzZeta(s, Add(Div(1, 2), n)), Sub(Mul(Sub(Pow(2, s), 1), RiemannZeta(s)), Mul(Pow(2, s), Sum(Div(1, Pow(Add(Mul(2, k), 1), s)), For(k, 0, Sub(n, 1))))))), Variables(s, n), Assumptions(And(Element(s, CC), Element(n, ZZGreaterEqual(0)))))