Assumptions:
TeX:
\sin\!\left(z + x\right) = \sum_{k=0}^{\infty} \sin\!\left(z + \frac{\pi k}{2}\right) \frac{{x}^{k}}{k !}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sin | Sine | |
| Sum | Sum | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("6b13be"),
Formula(Equal(Sin(Add(z, x)), Sum(Mul(Sin(Add(z, Div(Mul(Pi, k), 2))), Div(Pow(x, k), Factorial(k))), For(k, 0, Infinity)))),
Variables(z, x),
Assumptions(And(Element(z, CC), Element(x, CC))))