Assumptions:
TeX:
\sin\!\left(z + x\right) = \sum_{k=0}^{\infty} \sin\!\left(z + \frac{\pi k}{2}\right) \frac{{x}^{k}}{k !} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sin | Sine | |
Sum | Sum | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
Factorial | Factorial | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("6b13be"), Formula(Equal(Sin(Add(z, x)), Sum(Mul(Sin(Add(z, Div(Mul(Pi, k), 2))), Div(Pow(x, k), Factorial(k))), For(k, 0, Infinity)))), Variables(z, x), Assumptions(And(Element(z, CC), Element(x, CC))))