Fungrim home page

Fungrim entry: 69eb9b

HolomorphicDomain ⁣( ⁣(z,τ),z,C)=CΛ(1,τ)\operatorname{HolomorphicDomain}\!\left(\wp\!\left(z, \tau\right), z, \mathbb{C}\right) = \mathbb{C} \setminus \Lambda_{(1, \tau)}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\operatorname{HolomorphicDomain}\!\left(\wp\!\left(z, \tau\right), z, \mathbb{C}\right) = \mathbb{C} \setminus \Lambda_{(1, \tau)}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
WeierstrassP ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
CCC\mathbb{C} Complex numbers
LatticeΛ(a,b)\Lambda_{(a, b)} Complex lattice with periods a, b
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("69eb9b"),
    Formula(Equal(HolomorphicDomain(WeierstrassP(z, tau), z, CC), SetMinus(CC, Lattice(1, tau)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC