Assumptions:
TeX:
\zeta\!\left(1 - s, \frac{p}{q}\right) = \frac{2 \Gamma(s)}{{\left(2 \pi q\right)}^{s}} \sum_{k=1}^{q} \cos\!\left(\frac{\pi s}{2} - \frac{2 \pi k p}{q}\right) \zeta\!\left(s, \frac{k}{q}\right) s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \notin \mathbb{Z} \;\mathbin{\operatorname{and}}\; q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; p \in \{1, 2, \ldots, q\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Gamma | Gamma function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Sum | Sum | |
Cos | Cosine | |
CC | Complex numbers | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n | |
Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("69a1a9"), Formula(Equal(HurwitzZeta(Sub(1, s), Div(p, q)), Mul(Div(Mul(2, Gamma(s)), Pow(Mul(Mul(2, Pi), q), s)), Sum(Mul(Cos(Sub(Div(Mul(Pi, s), 2), Div(Mul(Mul(Mul(2, Pi), k), p), q))), HurwitzZeta(s, Div(k, q))), For(k, 1, q))))), Variables(s, p, q), Assumptions(And(Element(s, CC), NotElement(s, ZZ), Element(q, ZZGreaterEqual(1)), Element(p, Range(1, q)))))