Fungrim home page

Fungrim entry: 692e42

zerossCζ ⁣(s)={2n:nZ1}{ρn:nZandn0}\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\} \cup \left\{ \rho_{n} : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
TeX:
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\} \cup \left\{ \rho_{n} : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
CCC\mathbb{C} Complex numbers
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
RiemannZetaZeroρn\rho_{n} Nontrivial zero of the Riemann zeta function
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("692e42"),
    Formula(Equal(Zeros(RiemannZeta(s), s, Element(s, CC)), Union(SetBuilder(Neg(Mul(2, n)), n, Element(n, ZZGreaterEqual(1))), SetBuilder(RiemannZetaZero(n), n, And(Element(n, ZZ), Unequal(n, 0)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC