TeX:
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C}} \zeta\!\left(s\right) = \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\} \cup \left\{ \rho_{n} : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannZeta | Riemann zeta function | |
CC | Complex numbers | |
SetBuilder | Set comprehension | |
ZZGreaterEqual | Integers greater than or equal to n | |
RiemannZetaZero | Nontrivial zero of the Riemann zeta function | |
ZZ | Integers |
Source code for this entry:
Entry(ID("692e42"), Formula(Equal(Zeros(RiemannZeta(s), s, Element(s, CC)), Union(SetBuilder(Neg(Mul(2, n)), n, Element(n, ZZGreaterEqual(1))), SetBuilder(RiemannZetaZero(n), n, And(Element(n, ZZ), Unequal(n, 0)))))))