Assumptions:
TeX:
Y^{(r)}_{\nu}\!\left(z\right) = \frac{1}{{2}^{r}} \sum_{k=0}^{r} {\left(-1\right)}^{k} {r \choose k} Y_{\nu + 2 k - r}\!\left(z\right)
\nu \in \mathbb{C} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselYDerivative | Differentiated Bessel function of the second kind | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| BesselY | Bessel function of the second kind | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("68cc2f"),
Formula(Equal(BesselYDerivative(nu, z, r), Mul(Div(1, Pow(2, r)), Sum(Mul(Mul(Pow(-1, k), Binomial(r, k)), BesselY(Sub(Add(nu, Mul(2, k)), r), z)), Tuple(k, 0, r))))),
Variables(nu, z, r),
Assumptions(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))), Element(r, ZZGreaterEqual(0)))))