Assumptions:
TeX:
\gamma_{n}\!\left(a + 1\right) = \gamma_{n}\!\left(a\right) - \frac{\log^{n}\!\left(a\right)}{a}
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \notin \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| StieltjesGamma | Stieltjes constant | |
| Pow | Power | |
| Log | Natural logarithm | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("687b4d"),
Formula(Equal(StieltjesGamma(n, Add(a, 1)), Sub(StieltjesGamma(n, a), Div(Pow(Log(a), n), a)))),
Variables(n, a),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), NotElement(a, ZZLessEqual(0)))))