Assumptions:
TeX:
\sum_{n=0}^{\infty} T_{n}\!\left(x\right) {z}^{n} = \frac{1 - x z}{1 - 2 x z + {z}^{2}} x \in \left[-1, 1\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
ChebyshevT | Chebyshev polynomial of the first kind | |
Pow | Power | |
Infinity | Positive infinity | |
ClosedInterval | Closed interval | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("685d1a"), Formula(Equal(Sum(Mul(ChebyshevT(n, x), Pow(z, n)), For(n, 0, Infinity)), Div(Sub(1, Mul(x, z)), Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2))))), Variables(x, z), Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))