Assumptions:
TeX:
J_{-1 / 3}\!\left(z\right) = \frac{1}{2 \omega} \left(3 \operatorname{Ai}\!\left(-{\omega}^{2}\right) + \sqrt{3} \operatorname{Bi}\!\left(-{\omega}^{2}\right)\right)\; \text{ where } \omega = {\left(\frac{3 z}{2}\right)}^{1 / 3}
z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselJ | Bessel function of the first kind | |
| AiryAi | Airy function of the first kind | |
| Pow | Power | |
| Sqrt | Principal square root | |
| AiryBi | Airy function of the second kind | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("685892"),
Formula(Equal(BesselJ(Neg(Div(1, 3)), z), Where(Mul(Div(1, Mul(2, omega)), Add(Mul(3, AiryAi(Neg(Pow(omega, 2)))), Mul(Sqrt(3), AiryBi(Neg(Pow(omega, 2)))))), Equal(omega, Pow(Div(Mul(3, z), 2), Div(1, 3)))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))