Fungrim home page

Fungrim entry: 685126

F ⁣(ϕ+kπ,m)=F ⁣(ϕ,m)+2kK(m)F\!\left(\phi + k \pi, m\right) = F\!\left(\phi, m\right) + 2 k K(m)
Assumptions:ϕC  and  mC  and  kZ  and  m1\phi \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \ne 1
TeX:
F\!\left(\phi + k \pi, m\right) = F\!\left(\phi, m\right) + 2 k K(m)

\phi \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{C} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \ne 1
Definitions:
Fungrim symbol Notation Short description
IncompleteEllipticFF ⁣(ϕ,m)F\!\left(\phi, m\right) Legendre incomplete elliptic integral of the first kind
Piπ\pi The constant pi (3.14...)
EllipticKK(m)K(m) Legendre complete elliptic integral of the first kind
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("685126"),
    Formula(Equal(IncompleteEllipticF(Add(phi, Mul(k, Pi)), m), Add(IncompleteEllipticF(phi, m), Mul(Mul(2, k), EllipticK(m))))),
    Variables(phi, m, k),
    Assumptions(And(Element(phi, CC), Element(m, CC), Element(k, ZZ), NotEqual(m, 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC