Fungrim home page

Fungrim entry: 67f2ef

zero*y(0,)E2 ⁣(iy)[0.523521700017999266800534404806±1.101031]\mathop{\operatorname{zero*}\,}\limits_{y \in \left(0, \infty\right)} E_{2}\!\left(i y\right) \in \left[0.523521700017999266800534404806 \pm 1.10 \cdot 10^{-31}\right]
TeX:
\mathop{\operatorname{zero*}\,}\limits_{y \in \left(0, \infty\right)} E_{2}\!\left(i y\right) \in \left[0.523521700017999266800534404806 \pm 1.10 \cdot 10^{-31}\right]
Definitions:
Fungrim symbol Notation Short description
UniqueZerozero*xSf(x)\mathop{\operatorname{zero*}\,}\limits_{x \in S} f(x) Unique zero (root) of function
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
ConstIii Imaginary unit
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("67f2ef"),
    Formula(Element(UniqueZero(EisensteinE(2, Mul(ConstI, y)), ForElement(y, OpenInterval(0, Infinity))), RealBall(Decimal("0.523521700017999266800534404806"), Decimal("1.10e-31")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC