Assumptions:
TeX:
j\!\left(\tau\right) = {\left({\left(\frac{\eta\!\left(\tau\right)}{\eta\!\left(2 \tau\right)}\right)}^{8} + {2}^{8} {\left(\frac{\eta\!\left(2 \tau\right)}{\eta\!\left(\tau\right)}\right)}^{16}\right)}^{3}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularJ | Modular j-invariant | |
| Pow | Power | |
| DedekindEta | Dedekind eta function | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("664b4c"),
Formula(Equal(ModularJ(tau), Pow(Add(Pow(Div(DedekindEta(tau), DedekindEta(Mul(2, tau))), 8), Mul(Pow(2, 8), Pow(Div(DedekindEta(Mul(2, tau)), DedekindEta(tau)), 16))), 3))),
Variables(tau),
Assumptions(Element(tau, HH)))