Assumptions:
TeX:
j(\tau) = {\left({\left(\frac{\eta(\tau)}{\eta\!\left(2 \tau\right)}\right)}^{8} + {2}^{8} {\left(\frac{\eta\!\left(2 \tau\right)}{\eta(\tau)}\right)}^{16}\right)}^{3} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ModularJ | Modular j-invariant | |
Pow | Power | |
DedekindEta | Dedekind eta function | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("664b4c"), Formula(Equal(ModularJ(tau), Pow(Add(Pow(Div(DedekindEta(tau), DedekindEta(Mul(2, tau))), 8), Mul(Pow(2, 8), Pow(Div(DedekindEta(Mul(2, tau)), DedekindEta(tau)), 16))), 3))), Variables(tau), Assumptions(Element(tau, HH)))