Fungrim home page

Fungrim entry: 663d9c

gcd ⁣(a,b)ax+by\gcd\!\left(a, b\right) \mid a x + b y
Assumptions:aZandbZandxZandyZand(a0orb0)a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, y \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \left(a \ne 0 \,\mathbin{\operatorname{or}}\, b \ne 0\right)
TeX:
\gcd\!\left(a, b\right) \mid a x + b y

a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, y \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \left(a \ne 0 \,\mathbin{\operatorname{or}}\, b \ne 0\right)
Definitions:
Fungrim symbol Notation Short description
GCDgcd ⁣(n,k)\gcd\!\left(n, k\right) Greatest common divisor
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("663d9c"),
    Formula(Divides(GCD(a, b), Add(Mul(a, x), Mul(b, y)))),
    Variables(a, b, x, y),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(x, ZZ), Element(y, ZZ), Or(Unequal(a, 0), Unequal(b, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC