Assumptions:
TeX:
\log \Gamma\!\left(1 + z\right) = -\gamma z + \sum_{k=2}^{\infty} \frac{\zeta\!\left(k\right)}{k} {\left(-z\right)}^{k}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z\right| \lt 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogGamma | Logarithmic gamma function | |
| ConstGamma | The constant gamma (0.577...) | |
| RiemannZeta | Riemann zeta function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("661054"),
Formula(Equal(LogGamma(Add(1, z)), Add(Neg(Mul(ConstGamma, z)), Sum(Mul(Div(RiemannZeta(k), k), Pow(Neg(z), k)), Tuple(k, 2, Infinity))))),
Variables(z),
Assumptions(And(Element(z, CC), Less(Abs(z), 1))))